菜单
本页目录

1. Credit Loss Distribution

Credit Loss Distribution,描述在给定的时间段内(通常为一年)可能的信用损失及其发生的概率。

  • Credit risks are not normally distributed but highly skewed because the upward potential is limited to receiving at maximum the promised payments and only in very rare events to losing a lot of money.【收益有限, 比如利息;损失比较大,比如本金】
  • 信用损失的期望 $\rightarrow$ 预期损失(Expected Loss, EL)
  • 信用损失的标准差 $\rightarrow$ 非预期损失(Unexpected Loss, UL)

可以用 beta distribution 建模信用风险损失【关于 beta 分布,无需了解太深】

2. EL、UL、ULC(重要的不能再重要了)

(1) Expected Loss (EL)

指在未来一段时间(通常是一年)可能发生的平均损失,也就是损失的期望值。

类型公式备注
单个资产$EL(%) = PD \times LGD$
$EL($) = PD \times LGD \times EAD$
[主要用这个公式]
PD→信用评级、CS、莫顿模型计算PD
LGD=loss rate=1-回收率
EAD,也写作exposure amount(EA)
组合$$EL_p = \sum_{i=1}^n PD_i \times LGD_i \times EAD_i$$和资产之间的相关性ρ无关
两资产组合$$EL_p = PD_1 \times LGD_1 \times EAD_1 + PD_2 \times LGD_2 \times EAD_2$$

(2) Unexpected Loss (UL)

UL is the standard deviation of credit losses, that is, the standard deviation of actual credit losses around the expected loss average (EL).

切记:在这个科目中,UL的概念,与一级以及二级其他科目中的Unexpected Loss概念不同。

类型公式备注
单个资产$UL = EAD \times \sqrt{PD \times \sigma_{LGD}2 + LGD2 \times \sigma_{PD}2}$Bernoulli伯努利分布→$\sigma_{PD}2 = PD \times (1-PD)$
- $\sigma_{LGD}2$​$:LGD的方差$
$\sigma_{PD}
2$:PD的方差
组合$UL_p = \sum_i\sum_j \rho_{i,j} \times UL_i \times UL_j$$\rho_{i,j}$:资产i和j的违约相关性
两资产组合$UL_p = \sqrt{UL_12 + UL_22 + 2 \times \rho_{1,2} \times UL_1 \times UL_2}$
若单个资产的UL相等,相关系数相等$UL_p = UL \times \sqrt{n + n \times (n-1) \times \rho}$

(3) Unexpected Loss Contribution (ULC)

ULC是指单个资产(如loan)对整个UL的边际贡献。即衡量一个特定资产在整个组合可能出现的损失中占了多大的份额。【重点掌握两资产】

类型公式备注
一般公式$ULC_i = \frac{UL_i \times \sum_j \rho_{i,j} \times UL_j}{UL_p}$
两资产$ULC_1 = \frac{UL_12 + \rho_{11} \times UL_1 \times UL_2}{UL_p}$
$ULC_2 = \frac{UL_2
2 + \rho_{11} \times UL_1 \times UL_2}{UL_p}$
$ULC_1 + ULC_2 = UL_p$
前提:n笔loan,
每笔loan规模相同、风险特征相同
$ULC_i = \frac{UL_p}{n} = UL \times \sqrt{\frac{1}{n} + \rho \times (1-\frac{1}{n})}$the correlation between assets increases, the bank suffers from concentration risk集中度风险。
前提:n比较大时$ULC_i = UL \times \sqrt{\rho}$

Measures the tendency of multiple entities to default simultaneously

$\bullet$ 一家公司的违约可能引发另一家公司的违约,这被称为信用传染效应(creditcontagion effect)。

$\bullet$ joint default probability( $\pi_{12})$ :在时间范围 T 内两者都违约的概率

$$ \rho = \frac{Cov(X_1X_2)}{\sigma_{X_1}\sigma_{X_2}} = \frac{\pi_{12} - \pi_1\pi_2}{\sqrt{\pi_1(1-\pi_1)\sqrt{\pi_2(1-\pi_2)}}} $$

$\pi_{1}$ :资产1的违约概率

$\pi_{2}$ :资产 2 的违约概率

拓展推导过程: 一级数量科目,相关系数 $\textstyle\cdot\rho={\frac{\operatorname{Cov}(X_{1}X_{2})}{\sigma_{X_{1}}\sigma_{X_{2}}}}$
$\mathrm{E(X_{i})=\pi_{i};E(X_{1}X_{2}){=}\pi_{12}}$

$\mathrm{Var(X_{i}){=}E(X_{i}){2}-[E(X_{i})]{2}{=}{\pi}{i}(1-{\pi}{i})\Delta{i}{=}1,2}$

$\mathrm{Cov(X_{1},X_{2}){=}E(X_{1}X_{2}){-}E(X_{1})E(X_{2}){=}\pi_{12}-\pi_{1}\pi_{2}}$ $\mathrm{E}(\mathrm{X}{1}\mathrm{X}{2}){=}\mathrm{\pi}_{12}$

,见下表:

结果X₁X₂X₁X₂概率
No default000$1 - \pi_1 - \pi_2 + \pi_{12}$
Firm 1 only defaults100$\pi_1 - \pi_{12}$
Firm 2 only defaults010$\pi_2 - \pi_{12}$
Both firms default111$\pi_{12}$

$\mathrm{E(X_{1}X_{2})}{=}0{*}(1-,\pi_{1}-,\pi_{2}+\pi_{12})+0{}(\pi_{1}-,\pi_{12})+0^{}(\pi_{2}-,\pi_{12})+1^{*}\pi_{12}{=}\pi_{12}$

所以: $\begin{array}{r}{\rho=\frac{\mathrm{Cov}(X_{1}X_{2})}{\sigma_{X_{1}}\sigma_{X_{2}}}!=!\frac{\pi_{12}-\pi_{1}\pi_{2}}{\sqrt{\pi_{1}\left(1-\pi_{1}\right)}\sqrt{\pi_{2}\left(1-\pi_{2}\right)}}}\end{array}$

If default correlation in a portfolio of credits is equal to 1, then the portfolio behaves as ifit consisted ofjust one credit.【违约相关性 $=!1$ ,可以把这个组合看成一个资产】

  • No credit diversification is achieved.没有分散化效果
  • If default correlation is equal to O, then the number of defaults in the portfolio is a binomial ly distributed random variable. Significant credit diversification may be achieved.

Effect of Granularity on Credit VaR

  • “Granular颗粒度”指的是增加组合中独立信贷的数量,并减少每个信贷在整个组合中所占的比例。

  • 组合越“granular”,就意味包含更多的独立小额信贷,每个信贷占组合的比重越小。

  • Granularity is a measurement of the portfolio's concentration risk;

    • For a given default probability, Credit VaR decreases as the credit portfolio becomes more granular. 【granular↑,Credit VaR+】
    • The convergence is more drastic with a high default probability. 【违 约概率越高,CreditVaR下降越多】It is harder to reduce VaR by making the portfolio more granular, if the default probability is low.【违约概率越低,Credit VaR 较少,甚至很难下降】

其他计量违约相关性的模型

1. Reduced FormModels
  • Reduced form models assume that the hazard rates for different companies follow stochastic processes and are correlated with macroeconomic variables,

  • 优势:数学上具有吸引力,反映了经济周期产生违约相关性的趋势。

  • 劣势:可实现的违约相关性范围有限,即使两家公司的危险率完美相关,它们在同一短时间内同时违约的概率通常也很低。

2) Structural Models
  • 类似于Merton模型,公司在其资产价值低于某一水平时算违约
  • Default correlation between companies A and B is introduced into the model by assuming that the stochastic process followed by the assets of company A is correlated with the stochastic process followed by the assets of company B.
  • 优势:可以设定任意高的违约相关性。
  • 劣势:计算速度较慢。

4.Credit VaR

Credit VaR = WCL-EL

Worst case loss (WCL): Loss at the confidence level

Credit risk VaR & Market risk VaR

Credit risk VaRMarket risk VaR
Time horizonOne-year time horizonOne-day time horizon
ToolsMore elaborate model 更复杂的 模型, such as the Vasicek modelMain tool: historical simulation

5.量化信用风险的挑战

Credits are illiquid assets.【以前量化信用风险。但是随着金融市场的发展,信贷资产的流动性也在慢慢变好,会导致对实际风险的低估】

  • 精确计算风险比较困难。【对信贷的多期特性( multi-period nature of credits) 进行详细建模,包括借款人信用质量预期和非预期变化以及它们之间的相关性。尽管这些因素可以纳入分析方法 analytical approach 中,但非常复杂和繁琐.】
  • 相关性考虑不足。尽管信用跟某些风险评估方法会在同一类型的风险内考虑相关性,但在实际测量时,它们假设所有其他风险成分(如市场风险和操作风险)是相互独立的,并由银行的不同部门单独进行测量和管理。【在评估信用风险时,可能已经考虑了信用风险内的相关性,但往往与其他风险(如市场风险、操作风险)相关性考虑不足。在银行的实际风险管理中,往往各different departments。】